Lower Carbon Concrete

Covered materials and products
Concrete for use in buildings as well as horizontal (roadways and infrastructure) \(^{(1)}\) including modular units such as Concrete Masonry Units (CMU) and Concrete Brick.

Goal
To change how we specify concrete, one of our most GHG intensive materials, in a way that builds upon market-common capabilities and practices so that we reduce the GHG emissions burden of the building industry, including horizontal and infrastructure construction.

Background
Concrete includes use of cement, which is one of our most carbon-intensive materials. Cement yields approximate 0.9 pounds of carbon emission equivalents (CO2e) for each pound of cement produced. To achieve the GHG reduction goals of the Climate Leadership and Community Protection Act we need to reduce the embodied carbon in our built environment along with the operational carbon reductions.

Definitions
Aggregates: the gravel, sand, or recycled and sometimes decorative materials, at specified sizes, that are held by the cured binder in concrete.

Binder: the cement and water slurry that cures to hold the aggregates in concrete

Embodied Carbon\(^{(2)}\): The amount of CO2 equivalence (CO2e) in mining, manufacturing/processes, and assembly of a product in what is referred to as “Stage A1-A3” of a Life Cycle Assessment, also known as the up-front embodied carbon emissions.

Local Aggregates: Locally sourced stone at requisite size and characteristics for use in the concrete mix, reducing embodied carbon through reduction in transit weigh and volume.

CMU: Concrete Masonry Units are standard sized rectangular blocks made from concrete in off-site production, typically using molds or cutting machines. Mix includes cement and aggregates such as sand or gravel and may include add-mixtures or decorative pigments or aggregates.

Matrix: the binder and aggregate combination that is the concrete mix

PLC – Portland-Limestone Cement is a slightly modified version of Portland cement that improves both the environmental footprint and potentially the basic performance of concrete. It is now described in ASTM and AASHTO specifications.

Pozzolans: Another term for SCM (see definition below), including the option of ground-glass reused from the waste stream.
Recycled Concrete Aggregates (RCA): deconstructed concrete crushed on-site or off, intended for re-use in the project. RCA is not intended for re-use in concrete mixes.

Strength test: A test most often at 28-days of curing to confirm the concrete has achieved the required strength ratings. These are tests of poured test units and are non-destructive to the constructed entity.

Supplemental Cementitious Materials (SCM): Replacements for cement in concrete mixes. These can be waste stream materials or lower-carbon alternatives to cement. SCMs include fly ash, slag, and ground-glass.

Standard Setting and Certifying Programs

EPDs[^3]: Type III declaration that "quantifies environmental information on the life cycle of a product to enable comparisons between products fulfilling the same function." The EPD methodology is based on the Life Cycle Assessment (LCA) tool that follows ISO series 14040 (from ISO 14025).

Specifications

Affected entities shall, to the maximum extent practicable, procure concrete through the following considerations:

Provide an EPD where available for all batch-plant Ready-mix concrete delivered to jobsite.

In instances were no EPD is available, we have provided the chart below to inform SCM selections,

<table>
<thead>
<tr>
<th>Materials</th>
<th>Estimated lb. CO₂ per unit lb. material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement</td>
<td>0.9060</td>
</tr>
<tr>
<td>Fly Ash</td>
<td>0.0000</td>
</tr>
<tr>
<td>Slag</td>
<td>0.0210</td>
</tr>
<tr>
<td>Silica Fume</td>
<td>0.0000</td>
</tr>
<tr>
<td>Virgin Coarse Aggregate</td>
<td>0.0459</td>
</tr>
<tr>
<td>CCCA</td>
<td>0.0212</td>
</tr>
<tr>
<td>Sand</td>
<td>0.0139</td>
</tr>
</tbody>
</table>

Set Cement Content limits:

- Mix designs are limited to a maximum Portland cement content of 400 pounds per cubic yard, unless otherwise approved by the Engineer.
- For mass concrete and all concrete applications below grade and against earth, or below grade and confined concrete, such as concrete fill within steel pipe piles; mix designs are limited to a maximum Portland cement content of 300 pounds per cubic yard.
- This does not include sidewalks, slabs on grade, or any application that requires a final finish.
- The Contractor may also limit the cement content to 300 pounds per cubic yard for other applications that do not require labor for finishing prior to initial set provided that the performance requirements are met.

[^3]: Specifications and EPDs are based on standards and guidelines established by the American Concrete Institute (ACI) and the American Society for Testing and Materials (ASTM). These standards and guidelines are designed to ensure the quality and durability of concrete structures.
Achieve Additional Cement use reduction with inclusion of pozzolans:

- Supplementary Cementitious Materials: Substitute either fly ash, slag, or both.
- Unless otherwise shown on the Contract Drawings, the minimum total supplemental cementitious material (including fly ash, slag, silica fume and/or metakaolin) shall be 30 percent by total weight of cementitious materials.
- Micro ground-glass pozzolans are acceptable only for use in non-structural applications and in alignment with ASTM C1866.

Cement use reduction through reduction in percentage of binder:
The use of blended aggregates will increase the percentage of aggregate and reduce the percentage of binder in the designed mix, thereby reducing cement use.

- The nominal maximum size of coarse aggregate used shall be the largest size aggregate but should not be larger than (1) one-fifth the narrowest dimension between sides of forms or (2) one-third the depth of slabs or (3) three-quarters the minimum clear spacing between individual reinforcing bars or wires, bundles of bars, or prestressing tendons or ducts.

- Coarse Aggregate (Normal Weight Concrete): Conforming to ASTM C 33, ASTM C 227, and ASTM C 535 with a maximum percentage of wear of 40 percent, and ASTM C 88 with a magnesium sulfate loss of not more than 12 percent for a five-cycle test period.
• For full depth pavement concrete the combined aggregate volume shall be a minimum of 70 percent. The combined gradation of the fine and coarse aggregate shall conform to the following table, when tested in accordance with ASTM C 136:

<table>
<thead>
<tr>
<th>Sieve Size % Passing</th>
<th>For Pavement 10 Inches or Greater in Thickness</th>
<th>For Pavement Less Than 10 Inches in Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>2-1/2"</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>2"</td>
<td>90</td>
<td>98</td>
</tr>
<tr>
<td>1-1/2"</td>
<td>76</td>
<td>88</td>
</tr>
<tr>
<td>1"</td>
<td>67</td>
<td>79</td>
</tr>
<tr>
<td>3/4"</td>
<td>65</td>
<td>77</td>
</tr>
<tr>
<td>3/8"</td>
<td>48</td>
<td>60</td>
</tr>
<tr>
<td>No. 4</td>
<td>30</td>
<td>42</td>
</tr>
<tr>
<td>No. 8</td>
<td>27</td>
<td>37</td>
</tr>
<tr>
<td>No. 16</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>No. 30</td>
<td>16</td>
<td>22</td>
</tr>
<tr>
<td>No. 50</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>No. 100</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

CMU and Concrete Bricks:
• Provide Industry EPDs when available.
• Consider reduced-profile web design per ASTM C-90.
• Reduce cement content using guidance above.
 o This may require additional additives to affect a cure-time that allows release from any molds with the planned pre-cast timeframe.

Entities are encouraged to consider the following
• Maximizing SCM percentage while still meeting performance requirements
• Concrete reductions though “right-sized” structural elements
• Achieve GHG reductions through use of concrete as finish material to reduce additional material layers
• Concrete reductions by use of alternate structural components (e.g. mass timber)
• CO2 injection in tandem with additional cement reduction
Take-Back/ Recycling

Affected entities are encouraged to:

- Limit “attic stock” when purchasing modular units.
- Develop a plan for a design and responsible on-site use of any overage from concrete mixer trucks or on-site mixing processes

Disposal

If materials are being transferred for disposition, a record of each disposition shall be retained by the affected entity. Documentation shall be provided to the affected entity demonstrating that these products have been disposed of or beneficially reused in an environmentally sound manner in compliance with applicable local, state, and federal laws.

Related to pre-cast units, such as CMU, the contractor or disposing party shall provide assurance to the affected entity that all exports of used materials collected for reuse, recycling, or disposal will be in compliance with the laws of the importing country.

Packaging

Packaging shall comply with Environmental Conservation Law section 37-0205. Packaging shall not contain inks, dyes, pigments, adhesives, stabilizers, or any other additives to which any lead, cadmium, mercury or hexavalent chromium is intentionally added or contain incidental concentrations of lead, cadmium, mercury or hexavalent chromium which together are greater than 100 parts per million by weight (0.01%).

New York State encourages affected entities to adopt the following:

- The use of bulk packaging.
- The use of reusable packaging.
- The use of innovative packaging that reduces the weight of packaging, reduces packaging waste, or utilizes packaging that is a component of the product.
- That all packaging remains the property of the supplier and not become the property of the affected state entity under any circumstance or condition. The vendor shall certify that the packaging material will be reused, recycled, or composted, and managed in compliance with applicable local, state, and federal laws.
- Packaging that maximizes recycled content and/or meets or exceeds the minimum post-consumer content level for packaging in the U.S. Environmental Protection Agency Comprehensive Procurement Guidelines.
- Packaging that is recyclable or compostable.
End Notes

1 – A highly detailed technical specification on concrete, including a broader array of applications, is available through the exceptional work of the Port Authority of NY/NJ. Their spec has informed this effort.

2 - Widely recognized procedures for conducting LCAs are included in the 14000 series of environmental management standards of the International Organization for Standardization (ISO). Note specifically ISO 14040 and ISO 14044.

3 - Additional information on EPDs, from Port Authority of NY/NJ.

Environmental Product Declaration (EPD): An independently verified report based on life-cycle assessment studies that have been conducted according to a set of common rules for each product category and that have been peer reviewed.

Product-Specific Declaration: An EPD for a product with a publicly available, critically reviewed life-cycle assessment conforming to ISO 14044 that has at least a cradle to gate scope.

Industry-Wide (Generic) EPD: An EPD for a product with a third-party certification (Type III), including external verification, in which the manufacturer is explicitly recognized as a participant by the EPD program operator, and in which the EPD conforms to ISO 14025, 14040, 14044, and either EN 15804 or ISO 21930, and has at least a cradle to gate scope.

Product-Specific Type III EPD: An EPD for a product with a third-party certification, including external verification, in which the manufacturer is explicitly recognized by the EPD program operator, and in which the EPD conforms to ISO 14025, 14040, 14044, and either EN 15804 or ISO 21930, and has at least a cradle to gate scope.